Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(48): eadi3568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039365

RESUMEN

Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncertainty in the most uncertain radiative forcing agent.

2.
Nat Commun ; 13(1): 5914, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207322

RESUMEN

Biomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of aerosol models and satellite observations, we show that the bias in aerosol modelling results primarily from incorrect lifetimes and underestimated mass extinction coefficients. In turn, these biases seem to be related to incorrect precipitation and underestimated particle sizes. We further show that boosting BB emissions to correct AOD biases over the source region causes an overestimation of AOD in the outflow from Africa by 48%, leading to a double warming effect compared with when biases are simultaneously addressed for both aforementioned factors. Such deviations are particularly concerning in a warming future with increasing emissions from fires.


Asunto(s)
Contaminantes Atmosféricos , Incendios , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Sesgo , Biomasa , Monitoreo del Ambiente/métodos
3.
Environ Sci Technol ; 56(7): 3894-3904, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35319880

RESUMEN

Gaseous and particulate chlorine species play an important role in modulating tropospheric oxidation capacity, aerosol water uptake, visibility degradation, and human health. The lack of recent global continental chlorine emissions has hindered modeling studies of the role of chlorine in the atmosphere. Here, we develop a comprehensive global emission inventory of gaseous HCl and particulate Cl- (pCl), including 35 sources categorized in six source sectors based on published up-to-date activity data and emission factors. These emissions are gridded at a spatial resolution of 0.1° × 0.1° for the years 1960 to 2014. The estimated emissions of HCl and pCl in 2014 are 2354 (1661-3201) and 2321 (930-3264) Gg Cl a-1, respectively. Emissions of HCl are mostly from open waste burning (38%), open biomass burning (19%), energy (19%), and residential (13%) sectors, and the major sources classified by fuel type are combustion of waste (43%), biomass (32%), and coal (25%). Emissions of pCl are mostly from biofuel (29%) and open biomass burning processes (44%). The sectoral and spatial distributions of HCl and pCl emissions are very heterogeneous along the study period, and the temporal trends are mainly driven by the changes in emission factors, energy intensity, economy, and population.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Cloruros , Carbón Mineral , Monitoreo del Ambiente , Humanos , Ácido Clorhídrico , Material Particulado/análisis
4.
Environ Sci Technol ; 55(15): 10300-10309, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34296598

RESUMEN

Atmospheric black carbon (BC) concentrations are governed by both emissions and meteorological conditions. Distinguishing these effects enables quantification of the effectiveness of emission mitigation actions by excluding meteorological effects. Here, we develop reduced-form models in both direct (RFDMs) and inverse (RFIMs) modes to estimate ambient BC concentrations. The models were developed based on outputs from multiyear simulations under three conditional scenarios with realistic or fixed emissions and meteorological conditions. We established a set of probabilistic functions (PFs) to quantify the meteorological influences. A significant two-way linear relationship between multiyear annual emissions and mean ambient BC concentrations was revealed at the grid cell scale. The correlation between them was more significant at grid cells with high emission densities. The concentrations and emissions at a given grid cell are also significantly correlated with emissions and concentrations of the surrounding areas, respectively, although to a lesser extent. These dependences are anisotropic depending on the prevailing winds and source regions. The meteorologically induced variation at the monthly scale was significantly higher than that at the annual scale. Of the major meteorological parameters, wind vectors, temperature, and relative humidity were found to most significantly affect variation in ambient BC concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Meteorología , Hollín/análisis , Viento
5.
Sci Total Environ ; 771: 145411, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33524679

RESUMEN

Residential solid fuel combustion is a major emission source of PAHs (polycyclic aromatic hydrocarbons) in most developing countries, including China; however, accurate estimates of PAH emissions are often challenged by limited real-world emission factors (EFs) under field conditions, which can hardly be repeated in laboratory-controlled tests. In this study, a series of field measurements was conducted to determine the emissions of 28 PAHs from different fuel-stove combinations. A total of 14 fuel-stove combinations were studied. The total EFs of 28 PAHs (EFPAH28), on the basis of fuel mass, ranged from 20.7 to 535 mg/kg, with relatively lower EFs for coal than for biomass. Biomass burning in gasifier stoves had lower PAH EFs and fewer toxic PAH species than biomass burning in traditional brick stoves. Fuel type was a significant factor affecting PAH emissions, while stove difference had a relatively smaller influence. Much higher EFs were found from these field tests than from the idealized laboratory tests, which indicated significant underestimation in inventories based on the laboratory-based EFs. Biomass and coal had different profiles, with larger intra-fuel variations in coal than those in biomass. Highly variable values of some, though not all, commonly used isomer ratios indicated substantial biases in source apportionment relying on single or simple ratios without correction, and the MCE was found to be significantly corrected with some ratios.

6.
Ecotoxicol Environ Saf ; 211: 111959, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486383

RESUMEN

Indoor biomass burning produces large amounts of small particles and hazardous contaminants leading to severe air pollution and potentially high health risks associated with inhalation exposure. Personal samplers provide more accurate estimates of inhalation exposure. In this study, inhalation exposure to size-segregated particles and particulate polycyclic aromatic hydrocarbons (PAHs) for the biomass user was studied by deploying personal samplers. The study found that daily PM2.5 inhalation exposure level was as high as 121 ± 96 µg/m3, and over 84% was finer PM1.0. For PAHs, the exposure level was 113 ± 188 ng/m3, with over 77% in PM1.0. High molecular weight PAHs with larger toxic potentials enriched in smaller particles resulting in much high risks associated with PAHs inhalation exposure. Indoor exposure contributed to ~80% of the total inhalation exposure as a result of high indoor air pollution and longer residence spent indoor. The highest exposure risk was found for the male smoker who conducted cooking activities at home.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Exposición por Inhalación/estadística & datos numéricos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Biomasa , Carbón Mineral/análisis , Culinaria , Polvo , Vivienda , Humanos , Exposición por Inhalación/análisis , Tamaño de la Partícula , Población Rural , Tibet
7.
Environ Pollut ; 267: 115592, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254600

RESUMEN

Indoor biomass burning is a major contributor to the emission of PAHs (polycyclic aromatic hydrocarbons) in China. To date, estimates of PAH emissions from the burning of biomass have involved considerable uncertainty, mostly from the lack of real-world measurements of emission factors. In this study, we conducted a comprehensive evaluation on PAH emissions from biomass burning in real-world cooking stoves in three Chinese provinces. PAH emission factors, in both particle- and gas-phase, from 11 fuel-stove combinations were measured and the provincial emissions were estimated based on the measured emission factors and fuel consumption. The measured PAH28 emission factors (including 16 US EPA priority PAHs and 12 non-priority PAHs) ranged from 42 mg/kg to 370 mg/kg, with an order of magnitude difference, which was mostly affected by fuel type. The emission factors measured in this study were generally higher than those reported in laboratory studies and were comparable with field studies. The gas-particle distribution indicated that the absorption of PAHs by organic carbon in particulate matter (PM) was the dominant sorption mechanism in gas-particle distribution. The composition profile was different from previous studies, especially for non-priority PAHs, which are highly toxic and should be given more attention. Following the disparities in composition profiles, our study suggests that source apportionment based on single- or multi-diagnostic ratios may lead to large bias and uncertainties. It appears that the toxicity potential of PAHs in northern China emitted from combustion of crop residues is greater than that in southern China where PAHs are mainly emitted from wood combustion.


Asunto(s)
Contaminantes Atmosféricos , Artículos Domésticos , Hidrocarburos Policíclicos Aromáticos , Biomasa , China , Culinaria , Humanos , Material Particulado
8.
Environ Sci Technol ; 54(21): 13458-13466, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095991

RESUMEN

Residential heating using solid fuels contributes significantly to air pollution and has subsequent health impacts in China. To mitigate emissions, a clean heating campaign (CHC-1) covering 28 municipalities has been implemented. Although only a single penetration rate was initially planned by CHC-1 for all municipalities, outcomes in the different municipalities varied considerably. Recently, a second phase (CHC-2) has been launched for the remaining 128 municipalities in northern China with once again a fixed penetration rate set. Here, we quantified factors that affected the penetration rates of CHC-1, developed an intervention scheme with differentiated targets for CHC-2, and compared the environmental and health benefits of the fixed- and differentiated-rate strategies. We found that the penetration rates of CHC-1 depended on per capita income, terrain slope, and population density and that such relationships could be quantified using a piecewise regression model. This model was applied to develop a differentiated-rate strategy for CHC-2. It clearly evidenced that a differentiated scheme would be more environmentally beneficial. Although the same number of rural households can achieve clean heating under both intervention scenarios, the proposed differentiated strategy can prevent 30 000 (23 000-34 000) premature deaths associated with residential heating annually compared to the 26 000 (21 000-31 000) premature deaths prevented under the fixed-rate scheme. Differences among gender and age groups and the effects of urbanization and aging are also discussed.

9.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115732

RESUMEN

Residential contribution to air pollution-associated health impacts is critical, but inadequately addressed because of data gaps. Here, we fully model the effects of residential energy use on emissions, outdoor and indoor PM2.5 concentrations, exposure, and premature deaths using updated energy data. We show that the residential sector contributed only 7.5% of total energy consumption but contributed 27% of primary PM2.5 emissions; 23 and 71% of the outdoor and indoor PM2.5 concentrations, respectively; 68% of PM2.5 exposure; and 67% of PM2.5-induced premature deaths in 2014 in China, with a progressive order of magnitude increase from sources to receptors. Biomass fuels and coal provided similar contributions to health impacts. These findings are particularly true for rural populations, which contribute more to emissions and face higher premature death risks than urban populations. The impacts of both residential and nonresidential emissions are interconnected, and efforts are necessary to simultaneously mitigate both emission types.

10.
Environ Sci Technol ; 54(11): 6508-6517, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32379431

RESUMEN

The presence of sulfur dioxide (SO2) in the air is a global concern because of its severe environmental and public health impacts. Recent evidence from satellite observations shows rapid changes in the spatial distribution of global SO2 emissions, but such features are generally missing in global emission inventories that use a bottom-up method due to the lack of up-to-date information, especially in developing countries. Here, we rely on the latest data available on emission activities, control measures, and emission factors to estimate global SO2 emissions for the period 1960-2014 on a 0.1° × 0.1° spatial resolution. We design two counterfactual scenarios to isolate the contributions of emission activity growth and control measure deployment on historical SO2 emission changes. We find that activity growth has been the major factor driving global SO2 emission changes overall, but control measure deployment is playing an increasingly important role. With effective control measures deployed in developed countries, the predominant emission contributor has shifted from developed countries in the early 1960s (61%) to developing countries at present (83%). Developing countries show divergency in mitigation strategies and thus in SO2 emission trends. Stringent controls in China are driving the recent decline in global emissions. A further reduction in SO2 emissions would come from a large number of developing nations that currently lack effective SO2 emission controls.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Dióxido de Azufre/análisis
11.
Environ Sci Technol ; 53(19): 11337-11344, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31486635

RESUMEN

Historically, beehive coke ovens (BCOs) were extensively operated in China and emitted large quantities of pollutants, including primary PM2.5 and secondary PM2.5 precursors, and other climate forcers. Although these ovens were legally banned in 1996 by the Coal Law, the process of phasing them out took over a decade to accomplish. Based on historical operation data derived from remote sensing images, temporal trends and the spatial distribution of the emissions of various pollutants from BCOs were compiled and used to model the resulting perturbation in ambient PM2.5, population exposure, and PM2.5-associated adverse health impacts. Historically, PM2.5 originating from BCOs affected a vast region across China, which peaked in approximately 1996 and decreased afterward until the ovens' final elimination in 2011. According to the results of a supply-demand model, emissions from the BCOs would have continued to increase after 1996 if they had not been banned. As a result, national average PM2.5 attributable to BCOs in 2014 would have been more than three times as high as that in 1996. It was estimated that the cumulative number of premature deaths associated with BCO-originating PM2.5 from 1982 to 2014 was as high as 365 000 (95% confidence interval 259 000-402 000). The number would have nearly tripled if BCOs had not been banned and halved if the ban had been implemented immediately after the regulation was in force, suggesting the importance of legislation implementation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Coque , China , Material Particulado
12.
Proc Natl Acad Sci U S A ; 116(34): 16773-16780, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383761

RESUMEN

In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and 26 other municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with fewer than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190 to 230) µg/m3 to 125 (99 to 150) µg/m3 The population-weighted PM2.5 concentrations can be reduced from 140 µg/m3 in 2014 to 78 µg/m3 or 61 µg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because ∼90% of daily exposure of the rural population is attributable to indoor air pollution. Women benefit more than men.


Asunto(s)
Contaminación del Aire/análisis , Fuentes Generadoras de Energía , Composición Familiar , Combustibles Fósiles , Políticas , China , Electricidad , Exposición a Riesgos Ambientales , Geografía , Material Particulado/análisis , Factores de Tiempo
13.
Nat Commun ; 10(1): 3405, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363099

RESUMEN

Rural residential energy consumption in China is experiencing a rapid transition towards clean energy, nevertheless, solid fuel combustion remains an important emission source. Here we quantitatively evaluate the contribution of rural residential emissions to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) and the impacts on health and climate. The clean energy transitions result in remarkable reductions in the contributions to ambient PM2.5, avoiding 130,000 (90,000-160,000) premature deaths associated with PM2.5 exposure. The climate forcing associated with this sector declines from 0.057 ± 0.016 W/m2 in 1992 to 0.031 ± 0.008 W/m2 in 2012. Despite this, the large remaining quantities of solid fuels still contributed 14 ± 10 µg/m3 to population-weighted PM2.5 in 2012, which comprises 21 ± 14% of the overall population-weighted PM2.5 from all sources. Rural residential emissions affect not only rural but urban air quality, and the impacts are highly seasonal and location dependent.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Fuentes Generadoras de Energía , Contaminación del Aire , Composición Familiar , Vivienda/estadística & datos numéricos , Humanos , Material Particulado/análisis , Salud Rural/estadística & datos numéricos
14.
Environ Sci Technol ; 52(18): 10416-10425, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30118598

RESUMEN

Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 µm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Conceptos Meteorológicos , Material Particulado
15.
Environ Sci Technol ; 52(11): 6380-6389, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29687709

RESUMEN

Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM), and a multiregional input-output analysis (MRIO). BC was physically transported (i.e., atmospheric transport) from western to eastern countries in the midlatitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia was also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America, and East Asia (0.01 Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , África , Asia , Carbono , Europa (Continente) , Asia Oriental , Humanos , América del Norte
16.
Artículo en Inglés | MEDLINE | ID: mdl-29509086

RESUMEN

A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.


Asunto(s)
Filtros de Aire , Movimientos del Aire , Contaminantes Atmosféricos/análisis , Filtración/instrumentación , Gases/análisis , Manejo de Especímenes/instrumentación , Filtros de Aire/normas , Contaminantes Atmosféricos/farmacocinética , Difusión , Monitoreo del Ambiente/instrumentación , Filtración/métodos , Gases/farmacocinética , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Manejo de Especímenes/métodos
17.
Environ Int ; 113: 290-299, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29402553

RESUMEN

In China, rural migrant workers (RMWs) are employed in urban workplaces but receive minimal resources and welfare. Their residential energy use mix (REM) and pollutant emission profiles are different from those of traditional urban (URs) and rural residents (RRs). Their migration towards urban areas plays an important role in shaping the magnitudes and spatial patterns of pollutant emissions, ambient PM2.5 (fine particulate matter with a diameter smaller than 2.5 µm) concentrations, and associated health impacts in both urban and rural areas. Here we evaluate the impacts of RMW migration on REM pollutant emissions, ambient PM2.5, and subsequent premature deaths across China. At the national scale, RMW migration benefits ambient air quality because RMWs tend to transition to a cleaner REM upon arrival at urban areas-though not as clean as urban residents'. In 2010, RMW migration led to a decrease of 1.5 µg/m3 in ambient PM2.5 exposure concentrations (Cex) averaged across China and a subsequent decrease of 12,200 (5700 to 16,300, as 90% confidence interval) in premature deaths from exposure to ambient PM2.5. Despite the overall health benefit, large-scale cross-province migration increased megacities' PM2.5 levels by as much as 10 µg/m3 due to massive RMW inflows. Model simulations show that upgrading within-city RMWs' REMs can effectively offset the RMW-induced PM2.5 increase in megacities, and that policies that properly navigate migration directions may have potential for balancing the economic growth against ambient air quality deterioration. Our study indicates the urgency of considering air pollution impacts into migration-related policy formation in the context of rapid urbanization in China.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Migración Humana , Material Particulado , Migrantes/estadística & datos numéricos , Urbanización , Contaminantes Atmosféricos , China , Ciudades , Vivienda , Humanos , Mortalidad Prematura , Salud Pública , Población Rural
18.
Sci Adv ; 3(7): e1700300, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28776030

RESUMEN

Direct residential and transportation energy consumption (RTC) contributes significantly to ambient fine particulate matter with a diameter smaller than 2.5 µm (PM2.5) in China. During massive rural-urban migration, population and pollutant emissions from RTC have evolved in terms of magnitude and geographic distribution, which was thought to worsen PM2.5 levels in cities but has not been quantitatively addressed. We quantify the temporal trends and spatial patterns of migration to cities and evaluate their associated pollutant emissions from RTC and subsequent health impact from 1980 to 2030. We show that, despite increased urban RTC emissions due to migration, the net effect of migration in China has been a reduction of PM2.5 exposure, primarily because of an unequal distribution of RTC energy mixes between urban and rural areas. After migration, people have switched to cleaner fuel types, which considerably lessened regional emissions. Consequently, the national average PM2.5 exposure concentration in 2010 was reduced by 3.9 µg/m3 (90% confidence interval, 3.0 to 5.4 µg/m3) due to migration, corresponding to an annual reduction of 36,000 (19,000 to 47,000) premature deaths. This reduction was the result of an increase in deaths by 142,000 (78,000 to 181,000) due to migrants swarming into cities and decreases in deaths by 148,000 (76,000 to 194,000) and 29,000 (15,000 to 39,000) due to transitions to a cleaner energy mix and lower urban population densities, respectively. Locally, however, megacities such as Beijing and Shanghai experienced increases in PM2.5 exposure associated with migration because these cities received massive immigration, which has driven a large increase in local emissions.

19.
Environ Sci Technol ; 51(14): 7992-8000, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28613845

RESUMEN

The quantification of nitrogen oxide (NOx) emissions is critical for air quality modeling. Based on updated fuel consumption and emission factor databases, a global emission inventory was compiled with high spatial (0.1° × 0.1°), temporal (monthly), and source (87 sources) resolutions for the period 1960 to 2014. The monthly emission data have been uploaded online ( http://inventory.pku.edu.cn ), along with a number of other air pollutant and greenhouse gas data for free download. Differences in source profiles, not global total quantities, between our results and those reported previously were found. There were significant differences in total and per capita emissions and emission intensities among countries, especially between the developing and developed countries. Globally, the total annual NOx emissions finally stopped increasing in 2013 after continuously increasing over several decades, largely due to strict control measures taken in China in recent years. Nevertheless, the peak year of NOx emissions was later than for many other major air pollutants. Per capita emissions, either among countries or over years, follow typical inverted U-shaped environmental Kuznets curves, indicating that the emissions increased during the early stage of development and were restrained when socioeconomic development reached certain points. Although the trends are similar among countries, the turning points of developing countries appeared sooner than those of developed countries in terms of development status, confirming late-move advantages.


Asunto(s)
Contaminantes Atmosféricos , Óxidos de Nitrógeno , China , Países Desarrollados , Monitoreo del Ambiente , Humanos
20.
Environ Sci Technol ; 51(5): 2821-2829, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28121429

RESUMEN

There is increasing evidence indicating the critical role of ammonia (NH3) in the formation of secondary aerosols. Therefore, high quality NH3 emission inventory is important for modeling particulate matter in the atmosphere. Unfortunately, without directly measured emission factors (EFs) in developing countries, using data from developed countries could result in an underestimation of these emissions. A series of newly reported EFs for China provide an opportunity to update the NH3 emission inventory. In addition, a recently released fuel consumption data product has allowed for a multisource, high-resolution inventory to be assembled. In this study, an improved global NH3 emission inventory for combustion and industrial sources with high sectorial (70 sources), spatial (0.1° × 0.1°), and temporal (monthly) resolutions was compiled for the years 1960 to 2013. The estimated emissions from transportation (1.59 Tg) sectors in 2010 was 2.2 times higher than those of previous reports. The spatial variation of the emissions was associated with population, gross domestic production, and temperature. Unlike other major air pollutants, NH3 emissions continue to increase, even in developed countries, which is likely caused by an increased use of biomass fuel in the residential sector. The emissions density of NH3 in urban areas is an order of magnitude higher than in rural areas.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Atmósfera , Monitoreo del Ambiente , Material Particulado , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...